Rappels et compléments d'algèbre linéaire

Table des matières

1	Somme et somme directe de p sous-espaces vectoriels.	2
	1.1 Définition de la somme de plusieurs sous-espaces vectoriels de E	 2
	1.2 Somme directe de <i>p</i> sous-espaces vectoriels	 2
	1.3 Dimension d'une somme directe de <i>p</i> sous-espaces vectoriels	
	1.4 Caractérisation de sommes directes par concaténation des bases	 2
	1.5 Base de E adaptée à une décomposition de E en somme directe	 3
2	Projecteurs et symétries.	3
3	Sous-espace stable par un endomorphisme.	4
4	Changement de base.	4
4	Changement de base. 4.1 Matrice d'un endomorphisme dans une base	
4	4.1 Matrice d'un endomorphisme dans une base	 4
4	 4.1 Matrice d'un endomorphisme dans une base. 4.2 Matrice de passage de <i>B</i> vers <i>B'</i>	 4
4	4.1 Matrice d'un endomorphisme dans une base	 4 6 6
	4.1 Matrice d'un endomorphisme dans une base. 4.2 Matrice de passage de \mathscr{B} vers \mathscr{B}' . 4.3 Formule de changement de base. 4.4 Matrices semblables. Trace.	 4 6 6 6
	4.1 Matrice d'un endomorphisme dans une base. 4.2 Matrice de passage de \mathscr{B} vers \mathscr{B}' . 4.3 Formule de changement de base. 4.4 Matrices semblables. Trace.	 4 6 6 6
	4.1 Matrice d'un endomorphisme dans une base. 4.2 Matrice de passage de B vers B'. 4.3 Formule de changement de base. 4.4 Matrices semblables.	 4 6 6 7 7

Dans ce chapitre, E est un espace vectoriel sur $\mathbb{K}(\mathbb{K} = \mathbb{R} \text{ ou } \mathbb{C})$.

1 Somme et somme directe de *p* sous-espaces vectoriels.

1.1 Définition de la somme de plusieurs sous-espaces vectoriels de E.

Soit $(F_1, ..., F_p)$ une famille de sous-espaces vectoriels de E. On appelle somme des sous-espaces $F_1, ..., F_p$, le sous-espace vectoriel de E:

$$F_1 + \dots + F_p = \left\{ \vec{x} \in E \mid \exists \left(\vec{x_1}, \dots \vec{x_p} \right) \in F_1 \times \dots \times F_p / \vec{x} = \vec{x_1} + \dots + \vec{x_p} \right\}$$

Autrement dit, tout vecteur de la somme se « décompose » en la somme (pas nécessairement unique) de vecteurs dont chacun est dans l'un des sous-espaces.

1.2 Somme directe de p sous-espaces vectoriels.

Définition

La somme $F_1 + \cdots + F_p$ est dite directe si et seulement si :

$$\forall \vec{x} \in F_1 + \dots + F_p, \ \exists! \ \left(\vec{x_1}, \dots \vec{x_p}\right) \in F_1 \times \dots \times F_p \ / \ \vec{x} = \vec{x_1} + \dots + \vec{x_p}$$

et on note alors cette somme $F_1 \oplus \cdots \oplus F_p$.

Autrement dit, pour tout vecteur de la somme, la « décomposition » est unique.

Théorème : Caractérisation de la somme directe

Soit (F_1, \ldots, F_p) une famille de sous-espaces vectoriels de E.

Les deux propositions suivantes sont équivalentes :

- 1. la somme $F_1 + \cdots + F_p$ est directe,
- 2. pour tout $(\vec{x_1}, \dots, \vec{x_p}) \in F_1 \times \dots \times F_p$, si $\vec{x_1} + \dots + \vec{x_p} = \vec{0}$ alors $\vec{x_1} = \dots = \vec{x_p} = \vec{0}$,

1.3 Dimension d'une somme directe de *p* sous-espaces vectoriels.

Théorème

On suppose que E est de dimension finie. Soit (F_1, \ldots, F_p) une famille de sous-espaces vectoriels de E. On suppose que la somme $F_1 + \cdots + F_p$ est directe, alors

$$\dim (F_1 \oplus \cdots \oplus F_p) = \dim(F_1) + \cdots + \dim(F_p).$$

1.4 Caractérisation de sommes directes par concaténation des bases. .

Théorème

On suppose que E est de dimension finie. Soit (F_1, \ldots, F_p) une famille de sous-espaces vectoriels de E. Pour tout $i \in [1, p]$, on considère une base \mathcal{B}_i de F_i .

La somme $F_1 + \cdots + F_p$ est directe si et seulement si la concaténation des bases $\mathcal{B}_1, \ldots, \mathcal{B}_p$ est une famille libre de E.

1.5 Base de *E* adaptée à une décomposition de *E* en somme directe.

Définition

On suppose que E est de dimension finie. Soit (F_1,\ldots,F_p) une famille de sous-espaces vectoriels de E. On suppose que $: F_1 \oplus \cdots \oplus F_p = E$. Pour tout $i \in [\![1,p]\!]$, on considère une base \mathcal{B}_i de F_i . Alors $\mathcal{B} = \mathcal{B}_1 \cup \cdots \cup \mathcal{B}_p$ est une base de E. On dit que \mathcal{B} est une base de E adaptée à la décomposition en somme directe $: F_1 \oplus \cdots \oplus F_p = E$

2 Projecteurs et symétries.

Dans ce paragraphe, E est un espace vectoriel sur $\mathbb{K}(\mathbb{K} = \mathbb{R} \text{ ou } \mathbb{C})$. E n'est pas supposé être de dimension finie.

Définition

Soit F et G deux sous-espaces vectoriels supplémentaires de E. $E = F \oplus G$ On appelle **projecteur** sur F de direction G l'application :

$$\begin{cases} p : & E & \longrightarrow & E \\ \vec{x} = \vec{y} + \vec{z} & \longmapsto & p(\vec{x}) = \vec{y} \\ \vec{y} \in F, \vec{z} \in G & \end{cases}$$

Propriétés

Soit $E = F \oplus G$. Soit p le projecteur sur F de direction G. Alors :

- $p \in \mathcal{L}(E)$
- Ker(p) = G
- $\operatorname{Im}(p) = \operatorname{Ker}(p \operatorname{Id}_{E}) = F$
- $p \circ p = p$.

Théorème : Caractérisation des projecteurs

Soit $u \in \mathcal{L}(E)$. Alors :

u est un projecteur de E si et seulement si $u^2 = u$.

Dans ce cas Ker $u \oplus \text{Im } u = E$ et u est le projecteur sur Im u de direction Ker u.

Exercice 1 Soit E un \mathbb{R} -espace vectoriel de dimension S. Soit $\mathcal{B} = (e_1, e_2, e_3)$ une base de E. Soit f l'endomorphisme de E ayant pour matrice

$$M = \frac{1}{3} \left(\begin{array}{rrr} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{array} \right)$$

dans la base B.

- 1. Montrer que f est un projecteur.
- 2. Déterminer ses éléments caractéristiques. (c'est-à-dire son image et son noyau)

Exercice 2 On fixe $A \in \mathbb{R}[X]$. On suppose que deg $A = n \in \mathbb{N}^*$; On considère l'application Φ qui à un polynôme $P \in \mathbb{R}[X]$ associe le reste de la division euclidienne de P par A.

- 1. Montrer que Φ est un projecteur.
- 2. Déterminer ses éléments caractéristiques. (c'est-à-dire son image et son noyau)

Définition

Soit F et G deux sous-espaces vectoriels supplémentaires de E. $E = F \oplus G$ On appelle **symétrie** par rapport à F parallélement à G l'application :

$$\begin{cases} s : & E & \longrightarrow & E \\ \vec{x} = \vec{y} + \vec{z} & \longmapsto & s(\vec{x}) = \vec{y} - \vec{z} \\ \vec{y} \in F, \vec{z} \in G & \end{cases}$$

Remarque

Soit $E = F \oplus G$. Soit s la symétrie par rapport à F parallélement à G et p le projecteur sur F de direction G. Alors : $s = 2p - \mathrm{Id}_E$.

Propriétés Soit $E = F \oplus G$. Soit s la symétrie par rapport à F parallélement à G. Alors :

- $s \in \mathcal{L}(E)$
- $F = \text{Ker}(s \text{Id}_F)$
- $G = \text{Ker}(s + \text{Id}_E)$
- $s \circ s = \mathrm{Id}_E$.

Théorème : Caractérisation des symétries

Soit $u \in \mathcal{L}(E)$. Alors:

u est une symétrie de E si et seulement si $u^2 = Id_E$.

Dans ce cas Ker $(u - Id_E) \oplus Ker (u + Id_E) = E$ et u est la symétrie par rapport à Ker $(u - Id_E)$ parallélement à Ker $(u + Id_E)$.

3 Sous-espace stable par un endomorphisme.

Définition

Soit $u \in \mathcal{L}(E)$ et F un sous-espace vectoriel de E. On dit que F est **stable** par u si seulement si :

$$u(F) \subset F$$

c'est à dire si et seulement si :

$$\forall \vec{x} \in F, \ u(\vec{x}) \in F$$

Définition : Endomorphisme induit sur un sous-espace stable

Soit $u \in \mathcal{L}(E)$ et F un sous-espace vectoriel de E stable par u. Alors, l'application :

$$\begin{array}{cccc} \widetilde{u} & : & F & \longrightarrow & F \\ & \overrightarrow{x} & \longmapsto & u(\overrightarrow{x}) \end{array}$$

est un endomorphisme de F. On l'appelle **endomorphisme induit** par u sur le sous-espace stable F.

Propriétés

- Soit $(u, v) \in (\mathcal{L}(E))^2$. Si F est stable par u et v alors il est stable par $u \circ v$.
- Soit $u \in \mathcal{L}(E)$. Soit F un sous-espace vectoriel de E de dimension finie.

On suppose que $(e_1, ..., e_p)$ est une base de F. Alors :

F est stable par $u \iff \forall i \in [1, p]$, $u(e_i) \in F$.

Exercice 3 Soit $(u, v) \in (\mathcal{L}(E))^2$ vérifiant $u \circ v = v \circ u$. Montrer que Im v et Ker v sont stables par u.

4 Changement de base.

Désormais *E* est un \mathbb{K} -espace vectoriel de dimension $n \in \mathbb{N}^*$.

4.1 Matrice d'un endomorphisme dans une base.

Définition

Soit $\mathscr{B} = (\overrightarrow{e_1}, \dots, \overrightarrow{e_n})$ une base de E.

On appelle matrice de l'endomorphisme $u \in \mathcal{L}(E)$ dans la base \mathcal{B} la matrice :

$$\operatorname{Mat}_{\mathscr{B}}(u) = \begin{pmatrix} \alpha_{1,1} & \dots & \alpha_{1,n} \\ \vdots & & \vdots \\ \alpha_{n,1} & \dots & \alpha_{n,n} \end{pmatrix} \in \mathscr{M}_n(\mathbb{K})$$

dont les colonnes sont les coordonnées dans la base \mathcal{B} des images par u des vecteurs de la base \mathcal{B} ,

c'est à dire que :

$$\forall j \in [[1, n]], \ u(\vec{e}_j) = \sum_{i=1}^{n} \alpha_{i,j} \vec{e}_i$$

Propriété

L'application $u \in \mathcal{L}(E) \longmapsto \mathrm{Mat}_{\mathscr{B}}(u) \in \mathcal{M}_n(\mathbb{K})$ est un isomorphisme de \mathbb{K} -espaces vectoriels c'est à dire que :

$$\forall (\lambda,\mu) \in \mathbb{K}^2, \ \forall (u,v) \in \mathcal{L}(E)^2, \ \mathrm{Mat}_{\mathscr{B}}(\lambda u + \mu v) = \lambda \mathrm{Mat}_{\mathscr{B}}(u) + \mu \mathrm{Mat}_{\mathscr{B}}(v)$$

$$\forall A \in \mathcal{M}_n(\mathbb{K}), \exists ! u \in \mathcal{L}(E) / A = \text{Mat}_{\mathscr{B}}(u)$$

$$\dim(\mathcal{L}(E)) = \dim(\mathcal{M}_n(\mathbb{K})) = n^2 = \dim(E)^2$$

Exercice 4 *n est un entier naturel non nul.*

On définit Δ , l'application qui à un polynôme P de $\mathbb{R}_n[X]$ associe le polynôme réel $\Delta(P)$ vérifiant, pour tout réel x,

$$\Delta(P)(x) = P(x+1) - P(x).$$

On pose $F_0 = 1$ et pour tout $k \in [[1, n]]$ $F_k = \frac{1}{k!}X(X - 1)\cdots(X - k + 1)$.

- 1. Montrer que Δ est un endomorphisme de $\mathbb{R}_n[X]$.
- 2. Δ est-il un automorphisme de $\mathbb{R}_n[X]$?
- 3. Montrer que la famille (F_0, \ldots, F_n) est une base de $\mathbb{R}_n[X]$.
- 4. Pour tout $k \in [0,n]$ calculer $\Delta(F_k)$. En déduire la matrice de Δ dans la base (F_0,\ldots,F_n) .
- 5. Déterminer Ker Δ . Montrer que Im $\Delta = \mathbb{R}_{n-1}[X]$.

Exercice 5 Soit E un \mathbb{R} -espace vectoriel de dimension E Soit E = E La d'équation E d'équation E d'équation E d'equation E La d'equati

- 1. Montrer que $\mathbf{P} \oplus \mathbf{D} = E$.
- 2. Écrire la matrice dans la base \mathcal{B} du projecteur sur \mathbf{P} de direction \mathbf{D} .

Exercice 6 question courte ESCP

Soit E l'ensemble des endomorphismes f de $\mathbb{R}_n[X]$ tels que pour tout polynôme P, deg $f(P) \leq \deg P$. Montrer que E est un \mathbb{R} -espace vectoriel et déterminer sa dimension.

Théorème : Lien entre les opérations matricielles et le calcul de l'image par un endomorphisme Soit $u \in \mathcal{L}(E)$ et $A = \operatorname{Mat}_{\mathscr{B}}(u)$. Soit X la matrice colonne des coordonnées d'un vecteur $\vec{x} \in E$ dans la base \mathscr{B} . Alors Y = AX est la matrice colonne des coordonnées de $\overrightarrow{y} = u(\vec{x})$ dans la base \mathscr{B} .

$$\overrightarrow{y} = u(\overrightarrow{x}) \Longleftrightarrow Y = AX$$

Propriété

Si $u \in \mathcal{L}(E)$ et $v \in \mathcal{L}(E)$ alors :

$$\operatorname{Mat}_{\mathscr{B}}(u \circ v) = \operatorname{Mat}_{\mathscr{B}}(u) \cdot \operatorname{Mat}_{\mathscr{B}}(v)$$

En conséquence, si $u \in \mathcal{L}(E)$ alors :

$$\forall k \in \mathbb{N}, \operatorname{Mat}_{\mathscr{B}}(u^k) = \left[\operatorname{Mat}_{\mathscr{B}}(u)\right]^k.$$

si $u \in \mathcal{GL}(E)$ alors:

$$\operatorname{Mat}_{\mathscr{B}}(u^{-1}) = \left[\operatorname{Mat}_{\mathscr{B}}(u)\right]^{-1}.$$

4.2 Matrice de passage de \mathcal{B} vers \mathcal{B}' .

Définition

On appelle **matrice de passage** de la base \mathcal{B} vers \mathcal{B}' , la matrice $P_{\mathcal{B},\mathcal{B}'}$ dont les colonnes sont les coordonnées des vecteurs de \mathcal{B}' exprimées dans la base \mathcal{B} .

$$P_{\mathscr{B},\mathscr{B}'} = [p_{i,j}]_{1 \le i,j \le n}$$
 avec $\vec{e'}_j = \sum_{i=1}^n p_{i,j} \vec{e}_i$.

Propriété

Soit $\overrightarrow{x} \in E$.

On note $X_{\mathscr{B}}$ la matrice colonne des coordonnées du vecteur \overrightarrow{x} dans la base \mathscr{B} de E. On note $X_{\mathscr{B}'}$ la matrice colonne des coordonnées du vecteur \overrightarrow{x} dans la base \mathscr{B}' de E. Alors

$$X_{\mathcal{B}} = P_{\mathcal{B}, \mathcal{B}'} X_{\mathcal{B}'}$$

Théorème

Toute matrice de passage d'une base de E vers une autre base de E est inversible et

$$P_{\mathscr{B}',\mathscr{B}}^{-1} = P_{\mathscr{B},\mathscr{B}'}$$

4.3 Formule de changement de base.

Théorème

 $u \in \mathcal{L}(E)$

$$\operatorname{Mat}_{\mathscr{B}'}(u) = P_{\mathscr{B},\mathscr{B}'}^{-1} \operatorname{Mat}_{\mathscr{B}}(u) P_{\mathscr{B},\mathscr{B}'}$$

4.4 Matrices semblables.

Définition

Deux matrices A et B carrées sont semblables s'il existe une matrice inversible P telle que $B = P^{-1}AP$. A et B peuvent être interprétées comme les matrices d'un même endomorphisme dans des bases différentes.

Exercice 7 Soit E un \mathbb{R} -espace vectoriel de dimension 3. Soit $\mathcal{B} = (e_1, e_2, e_3)$ une base de E. Soit E u l'endomorphisme de E ayant pour matrice

$$M = \left(\begin{array}{rrr} 1 & 1 & -1 \\ 2 & 0 & -1 \\ 2 & 1 & -2 \end{array}\right)$$

dans la base B.

- 1. Montrer que f est une symétrie.
- 2. Déterminer ses éléments caractéristiques.
- 3. Déterminer une base B' de E telle que

$$\operatorname{Mat}_{\mathscr{B}'}(u) = \Delta \ o\dot{u} \ \Delta = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{array} \right).$$

6

4. Expliquer pourquoi M et Δ sont deux matrices semblables.

5 Trace.

5.1 Trace d'une matrice carrée.

Définition

La trace de la matrice $A=(a_{i,j})_{1\leqslant i,j\leqslant n}\in \mathcal{M}_n(\mathbb{K})$ est la la somme de ses coefficients diagonaux.

$$Tr(A) = \sum_{i=1}^{n} a_{i,i}$$

5.2 Propriétés.

Théorème : Linéarité de la trace.

L'application de $\mathcal{M}_n(\mathbb{K})$ vers \mathbb{K} qui à une matrice associe sa trace est une forme linéaire. En d'autres termes :

$$\forall (A, B) \in \mathcal{M}_n(\mathbb{K}) \times \mathcal{M}_n(\mathbb{K}), \quad \forall (\lambda, \beta) \in \mathbb{K}^2 \quad \operatorname{Tr}(\lambda A + \beta B) = \lambda \operatorname{Tr}(A) + \beta \operatorname{Tr}(B)$$

Exercice 8 $E = \mathcal{M}_n(\mathbb{R})$; déterminer la dimension de $H = \{A \in E/Tr(A) = 0\}$.

Exercice 9 1. Montrer que $\forall (A,B) \in \mathcal{M}_n(\mathbb{K})^2$, Tr(AB) = Tr(BA)

2. Peut-on trouver deux matrices A et B de $\mathcal{M}_n(\mathbb{K})$ vérifiant $AB - BA = I_n$?

5.3 Invariance de la trace par changement de base.

Théorème

Deux matrices semblables ont la même trace. En d'autres termes :

Pour toute matrice A de $\mathcal{M}_n(\mathbb{K})$ et toute matrice P de $\mathcal{M}_n(\mathbb{K})$ inversible, on a :

$$\operatorname{Tr}(A) = \operatorname{Tr}(P^{-1}AP).$$

Exercice 10 *E est un espace vectoriel sur* \mathbb{R} *de dimension* $n \in \mathbb{N}^*$.

- 1. Montrer que deux matrices semblables ont la même trace.
- 2. Pour $f \in \mathcal{L}(E)$, justifier la notation Tr(f).
- 3. Soit p un projecteur de E. Montrer que : Tr(p) = rg p.